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Abstract

A guantitative structure—mobility relationship (QSMR) was developed for the absolute mobilities of 115 carboxylic and sulphonic acids in
capillary electrophoresis based on the descriptors calculated from the structure alone. The heuristic method (HM) and radial basis function
neural networks (RBFNN) were utilized to construct the linear and nonlinear prediction models, respectively. The prediction results were in
agreement with the experimental values. The HM model gave an root-mean-square (RMS) error of 3.76 electrophoretic mobility units for the
training set, 5.59 for the test set, and 4.19 for the whole data set, while the RBFNN gave an RMS error of 1.78, 2.04, and 1.83, respectively.
The heuristic linear model could give some insights into the factors that are likely to govern the mobilities of the compounds, however, the
prediction results of the RBFNN model seem to be better than that of the heuristic method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction model (sed1]), the mobility of an ion ) can be expressed
by:
1.1. Summary of the calculation/prediction of q
electrophoretic mobility in CE n=—-— Q)
fh+ fa

Capillary electrophoresis (CE) has become an important where q is the effective charge on the ion arfgl and fy
separation technique in analytical chemistry. This technique are hydrodynamic (size- and shape-related) and dielectric
has been used to separate analytes ranging from small inor{charge-induced) frictional drag. The hydrodynamic friction
ganic and organic ions to macromolecular species such asassociates with moving the solute through a continuum sol-
DNA and proteins. Its speed, resolving power, efficiency, vent of finite viscosity. The dielectric friction is due to the
analyte solubility and stability, minimal reagent and sol- interaction between the moving ion and the adjacent solvent
vent consumption, compatibility with mass spectrometry and dipoles[1]. Absolute mobility is a constant characteristic of
availability of several modes has made CE a very popu- anion. Typically, absolute mobility.{o) is measured experi-
lar technique and alternative to other analytical methods mentally either by extrapolating the mobilities observed over
like high performance liquid chromatography (HPLC). Elec- a range of ionic strength to infinite dilution or by measuring
trophoretic mobility is the most important parameter gov- their limiting equivalent conductang2].
erning the separation of solutes in CE. According to Born’s During method development in CE to develop an opti-

mized separation, the analysts generally have to employ a
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differences in the analyte’s mobility and any attempt to pro-  Lietal. used Pitts equation to account for the effect of ionic
vide a computation method to calculate the mobility in a cer- strength on the mobilities in capillary zone electrophoresis
tain practical conditions could provide a useful tool for faster using 55 carboxylates, phenols, sulfonates, and monoamines
method optimization process in CE. Therefore, developing as examplef6]. The influence was represented as follows:
theoretical models to predict the electrophoretic behaviour
of analytes are necessary. However, only a few reports have,, _ 1o — Cq Vi (6)
investigated the quantitative correlation between the molecu- 1+241
lar parameters and the responses obtained m_CE. Because thv(?/hereuo is the infinite dilution mobility of the ionC a con-
number of such studies is limited and to provide a summary . . L

. . stant,q the charge on the solute anion, ah@ the ionic
of them, a brief review was presented here.

. . . . _strength of the buffer.
The computational methods used in the previous studies™ . ,
. . - ) Li and Lucy correlated the absolute electrophoretic mo-
to calculate/predict electrophoretic mobility can be classi- | .. : :
o : . bility of 39 aromatic carboxylates and sulfonates with mod-
fied into two categories. One approach is to use mathemat-

ical equation to correlate electrophoretic mobility with the els incorporating both hydrodynamlc and dielectric frictions
represented as followg]:
molecular parametef2-7].

An approximation of mobility was proposed for peptides 17.3 x 10~%g
in Offord’s equatior{3]: HO= ViB 4462/ v) %
Cq
W= 2) and
. o 189 x 107%
whereC is a proportionality constant] the charge on the = 8
prop y 4 9 o= e IE T 208 (2 V) (8)

analyte andM is the molecular mass of the ion.
Based on three assumptions: (1) the molecular lMass  whereq is the charge numbeY, the molecular volume, and

can be treated as composed of effective ntassd hidden  f/f; is a frictional correction ratio. The obtained percentage
massH, M = E + H; (2) the mobility . is proportional to the  errors forEgs. (7) and (8jre 4.4 and 4.0%, respectively.
chargeq and inversely proportional to the effective mass to  The other methods are more empirically based on quanti-
the power 2/3; and (3) botiandH are additive functions of  tative structure-property relationship (QSPR) approaches us-
composition, Wraski proposed the equaticdl: ing the techniques such as multiple linear regression, artificial
L = 668 E-2/3 3) neural network8-13], and support vector machif#4].

Multiple linear regression (MLR) technique was used

The mobilities of about 200 carboxylic, sulphonic, and amino t0 establish the models for predicting the mobilities of 13
acids calculated bEq. (3)yields an average relative error of ~flavonoids by means of the topological indices and 23 mod-

+1.5% for organic acids antt0.8% for peptides. els of two-indices were generated with similar statistical re-
Fuand Lucy predicted the absolute mobility of 34 aliphatic Sults R > 0.93, relative standard errer 10%) in the work
amines and other 20 monoamines by the equdfifin of Liang et al.[8].
A comparative study between MLR and artificial neu-
o 6.39x 1073 @) ral networks (ANNs) has been carried out employing elec-

- M9620 + 0.221H,, — 0.157S trophoretic mobility of 13 sulfonamides by Jalali-Heravi and
Garkani-Nejad9]. The linear models they proposed were

whereM; is the molecular mass of the analyitk, represents represented as follows:

the mean water of hydration calculated by McGowan'’s frag-

ment addition method arfslis an empirical shape index. The e = Co+ C1AH; + C2 PPCH+ C3SA 9)
best model yields an average prediction error of 4.1% for 34

aliphatic amines, 7.2% for 7 monoamines, and 3.3% for 13 and

monoamines, respectively. _
Fu et al. then developed an equation based on the Max"e = Ca+ CsAH; + Co PPCH C7pK (10)

Born's model for calculating the absolute mobility of 34 \herey. is the effective electrophoretic mobilityHr the
amines and 15 aliphatic carboxylates employing molar vol- heat of formation of anions, PPCH denotes maximum posi-
ume {) and acid/base dissociation constarkXi$5]. The tive partial charge on the anions, SA represents the surface
equation is formulated as: area, X is p-function of dissociation constant, ang-Cy are

Co thg model constants. A non-linear 3-4-2 ANN was ggnerated
= m (5) using the three descriptors afHs, PPCH and SA as inputs

for the anionic sulfonamides and a 3-6-1 ANN was generated

whereCo—Cy are the model constants. The obtained average usingAH;, PPCH and K for the cationic sulfonamides. The
errors for amines and aliphatic carboxylates are 4.1 and 3.7%,authors concluded that the ANN model shows the superiority
respectively based on correlative equations. over the MLR model for sulfonamide data.

o
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In the same way, Jalali-Heravi and Garkani-Nejad devel-  Inourlatestwork in this area, MLR, RBFNN, and the sup-
oped models for the prediction of the electrophoretic mobil- port vector machines (SVM) were used to develop a predic-
ities of 31 isomeric alkyl- and alkenylpyridines in capillary tive model for the absolute mobility of 58 aliphatic and aro-
electrophoresifl0]. The three descriptors reciprocal of Van matic carboxylic acids based on four molecular descriptors
der Waals radius of the molecules (RVDW), principal mo- calculated from the structure alofig4]. The selected four
ment of inertia of the molecules around thaxis (MO, ), and descriptors are average bonding information content (order
dipole moment of the molecules (DIMO) which are selected 0) (ABICO), ZX Shadow/ZX Rectangle (ZXS/ZXR), count
by the MLR technique were used to as inputs for the ANN. of H-donors sites [Zefirov's PC] (CHDS), and refractivity
The neural network is a fully connected back-propagation (REF). The correlation coefficient in absolute mobility pre-
model with a 3-6-1 architecture. Standard error of training dictions for the whole data set given by MLR, RBFNN, and
and prediction are 6.28 and 5.11%, respectively, for the MLR SVM are 0.947, 0.960, and 0.984, respectively.
model and 1.03 and 1.20%, respectively, forthe ANN model.  Of those previous studies that aimed at predicting the

In the previous work of our laboratory, Li et al. con- electrophoretic mobility, the most promising method is to
structed a model to estimate the electrophoretic mobilities use QSPR approach. QSPR methods have been successfully
of 56 aliphatic carboxylates and amines by means of a multi- used to predict a variety of physical, chemical, and biologi-
layer neural network using extended delta-bar-delta (EDBD) cal properties of compounds. The advantage of this approach
algorithm[11]. The molecular mas$A)), molecular volume over other methods lies in the fact that the descriptors used
(V), the code (+1 represent basic solute antl represent  can be calculated from structure alone and are not dependent
acid solute) of acid and base and palue were used as in- on any experimental properties. Once the structure of a com-
put parameters of the neural networks. The average absolutgound is known, any descriptor can be calculated no matter
prediction errors in the training, validation and test sets are whether they are found or not. So once a reliable model is
2.19, 3.65 and 3.22%, respectively. established, we can use this method to predict the property of

Jouyban proposed a QSPR model to calculate the log-compounds. Therefore, quantitative structure—mobility rela-
arithm of the electrophoretic mobility of five data sets us- tionship (QSMR) is a useful tool to predict the electrophoretic
ing structural descriptors computed by HyperChem software mobilities avoiding long and tedious separation optimization.

[12]. The proposed model is: QSMR study can also tell us which of the structural factors
may play an important role in the determination of the abso-
In u = Co+ C1PQ+ Cov?/3 lute mobility of the compound.
+ C3TE+ C4 AH; + Cs MR (12)

1.2. Techniques used and the aims of the present work

where PQ is partial charg&?/® denotes surface area, TE
stands for total energy\Hs represents heat of formation, One of the important problems for the QSPR applica-
MR is molecular refractivity an€€o—Cs are the model con- tions is the numerical representation (often called molec-
stants which are calculated using a least squares analysis. Thlar descriptor) of the chemical structure. The built model
absolute average relative deviation values for predicting of Performance and the accuracy of the results are strongly de-
electrophoretic mobilities of 10 beta-blockers, 26 benzoates, Pendent on the way the structural representation was per-
11 non-steroidal anti-inflammatory drugs, 13 sulfonamides, formed. Various numerical representations of the compounds
and 18 amines are 1.0, 2.1, 0.8, 0.6, and 2.7%, respectively. Were proposed in QSPR studies: constitutional and topo-
Wang et al. in our laboratory studied the relationship be- l0gical descriptors; numerical code; quantum chemistry de-
tween the relative mobility of a group of 19 chlorophenols in Scriptors, etc. The Software CODESSA, developed by Ka-
different buffers modified by eight kinds of different organic  tritzky group, enables the calculation of a large number of
additives in capillary zone electrophoresis by means of MLR quantitative descriptors based solely on the molecular struc-
and radial basis function neural networis3]. The linear tural information[15-17] and codes this chemical infor-

relationship was represented as follow: mation into mathematical form. CODESSA combines di-
verse methods for quantifying the structural information
wr = —19.7184 0.208GS+ 1.276HE— 1.377DIP about the molecule with advanced statistical analysis to es-
tablish molecular structure—property/activity relationships.
—0.183AP+ 2.316EHomo; CODESSA has been applied successfully in a variety of
n =152 F =20726, S.E.=1.38 (12) QSPR analyseid 8-21}

Neural networks have been applied to QSPR analysis since
wherep; is the relative mobility, GS approximate molecu- the late 1980s due to its flexibility in modeling nonlinear
lar surface area, HE hydration energy, DIP dipole moment, problem, mainly in response to increased accuracy demands.
AP the polarity of the organic additives, aigomo is the They have been widely used to predict many physicochemi-
energy of the highest occupied molecular orbital. The non- cal properties. There exist many models of neural networks,
linear RBFNN model gives the correlation coefficighbf which have different approaches both in architecture and in
0.986 for the training set and 0.980 for the test set. learning algorithms. The most popular neural network model
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Table 1

The compounds and the predicted electrophoretic mobilities¥@? s~ V1)

C. Xue et al. / J. Chromatogr. A 1048 (2004) 233-243

No. Compounds Experimental Calculategiy® Abs errof Calculategigrnn® Abs errof
1 Fluoroacetic acid 43.9 36.2 N 43.8 0.1
2 Trifluoroacetic acid 42.5 42.4 .D 42.2 0.3
3 Chloroacetic acid 41.9 39.8 r 39.4 25
4 Dichloroacetic acid 394 39.7 D 39.7 0.3
5¢ Trichloroacetic acid 36.2 40.7 RZ 35.5 0.7
6 3-Chloropropionic acid 36.8 37.0 D 39.2 2.4
7 2-Chlorobutyric acid 32.8 35.0 2 32.8 0.0
8 5-Chlorovaleric acid 30.8 32.2 A 31.0 0.2
9 Bromoacetic acid 38.8 38.0 kYY) 40.7 1.9

10° 2-Bromopropionic acid 334 38.3 9 36.7 3.3
11 2-Bromobutyric acid 30.8 34.8 @ 324 1.6
12 4-Bromobutyric acid 32.8 32.3 R 31.9 0.9
13 5-Bromovaleric acid 30.8 31.7 D 30.8 0.0
14 2,3-Dibromopropionic acid 32.3 33.7 A1 31.9 0.4
158 Tribromoacetic acid 34.9 36.1 A 35.5 0.6
16 lodoacetic acid 40.2 38.8 A 39.9 0.3
17 3-lodopropionic acid 34.9 37.7 R4 35.4 0.5
18 4-lodobutyric acid 32.9 32.6 RG] 32.0 0.9
19 5-lodovaleric acid 30.8 32.0 A 30.9 0.1
20° 3,4-Dibromofluoroacetic acid 36.9 25.3 61 394 25
21 Chlorodibromoacetic acid 34.9 38.4 .53 35.0 0.1
22 Glycolic acid 42.3 43.0 Ke) 40.4 1.9
23 Lactic acid 36.5 41.3 .8 40.7 4.2
24 2-Hydroxybutyric acid 34.2 36.6 2 34.6 0.4
25° Glyceric acid 36.3 40.2 8 38.2 1.9
26 Glucuronic acid 26.6 32.3 B 26.2 0.4
27 Gluconic acid 27.2 315 3 27.7 0.5
28 2-Chloro-3-hydroxybutyric acid 329 34.5 .61 34.6 17
29 Glyoxalic acid 37.8 48.5 10 38.2 0.4
30° Pyruvic acid 40.4 51.3 10 40.9 0.5
31 Trichlorolactic acid 34.2 36.6 2 34.6 0.4
32 Maleic acid 62.0 64.0 .Q 62.5 0.5
33 Fumaric acid 61.2 64.7 3 62.6 14
34 Tartaric acid 60.5 57.5 .8 59.9 0.6
35° Citric acid 70.8 60.7 1a 71.0 0.2
36 2-Ketoglutaric acid 59.0 54.6 4 58.9 0.1
37 Malic acid 59.0 52.7 8 60.2 1.2
38 Thiomalic acid 58.5 49.2 .9 54.2 4.3
39 2,3-Dimercaptopropanesulphonic acid 34.4 34.3 10 35.2 0.8
40° 2-Hydroxyethanesulphonic acid 39.6 41.6 .02 41.0 14
41 Cyclobutane-1,1-dicarboxylic acid 51.1 55.0 93 56.1 5.0
42 Cyclopentane-1,1-dicarboxylic acid 50.0 53.8 83 51.1 11
43 Cyclohexane-1,1-dicarboxylic acid 48.0 53.2 25 48.3 0.3
44 Methylmalonic acid 58.5 54.1 4 58.2 0.3
458 Methylethylmalonic acid 50.0 49.9 .D 52.3 2.3
46 Propylmalonic acid 52.0 45.7 <) 48.9 3.1
47 Diethylmalonic acid 49.5 48.5 .a 48.6 0.9
48 Ethylpropylmalonic acid 47.0 44.7 2 45.9 11
49 Dipropylmalonic acid 46.0 44.3 a 44.4 1.6
50° Oxaloacetic acid 56.0 52.7 3 53.0 3.0
51 3-Propylglutaric acid 47.0 434 .8 47.6 0.6
52 Benzoic acid 34.4 34.2 Wi 345 0.1
53 Benzenesulphonic acid 38.7 39.2 50 35.1 3.6
54 p-Toluenesulphonic acid 311 31.3 .20 34.0 2.9
55° 0-Aminoenzoic acid 31.6 27.4 2 30.3 1.3
56 Sulphonic acid 33.7 33.1 ® 35.2 15
57 p-Fluorobenzoic acid 33.4 29.5 B 33.3 0.1
58 p-Chlorobenzoic acid 33.4 28.5 Ret 33.7 0.3
59 m-lodobenzoic acid 334 24.8 B 30.0 34
60° p-Bromobenzoic acid 315 28.0 B 345 3.0
61 p-Nitrobenzoic acid 32.1 30.6 A 30.6 15
62 3,5-Dinitrobenzoic acid 29.5 31.9 2 30.6 11
63 p-Toluic acid 29.1 28.1 D 30.7 1.6
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Table 1 Continued
No. Compounds Experimental Calculategiy® Abs errof Calculategigrnn® Abs errof
64 p-Ethylbenzoic acid 26.5 24.7 a 27.4 0.9
65° 2,3-Dimethylbenzoic acid 27.1 27.6 .20 29.2 2.1
66 o-Isopropylbenzoic acid 24.7 27.5 RS 28.0 3.3
67 2,4,6-Trimethylbenzoic acid 24.7 30.0 .35 29.0 4.3
68 p-tert-Butylbenzoic acid 23.2 18.6 .8 23.4 0.2
69 p-Hydroxybenzoic acid 34.0 33.6 D 34.7 0.7
707 Salicylic acid 35.4 38.5 3 34.9 0.5
71 2,4-Dihydroxybenzoic acid 32.0 37.8 .85 31.1 0.9
72 3,4-Dihydroxybenzoic acid 34.4 32.7 71 33.5 0.9
73 Gallic acid 34.4 35.7 3 34.5 0.1
74 p-Methoxybenzoic acid 28.3 27.7 ® 30.1 1.8
75° p-Ethoxybenzoic acid 26.6 23.7 @ 27.7 1.1
76 2-Nitro-3-bromobenzoic acid 28.2 315 .33 29.3 11
77 2-Nitro-3-chlorobenzoic acid 31.3 33.1 .81 32.8 15
78 Phenol 34.4 39.4 .8 315 2.9
79 p-Nitrophenol 33.4 30.7 4 34.2 0.8
8¢ 2,4-Dinitrophenol 31.3 40.6 9 29.5 1.8
81 Picric acid 315 35.9 4 311 0.4
82 p-Chlorophenol 33.4 33.1 .8 33.1 0.3
83 2,4-Dichlorophenol 31.3 27.3 .a 28.6 2.7
84 Vanillic acid 27.1 24.9 2 25.7 14
85° Cinnamic acid 28.3 39.7 4 32.0 3.7
86 Phenylacetic acid 31.7 34.0 .32 31.6 0.1
87 Phenoxyacetic acid 27.8 33.1 .35 33.9 6.1
88 Nicotinic acid 34.6 38.8 2 33.9 0.7
89 2-Naphthalenesulphonic acid 31.3 25.4 95 29.2 2.1
90° Acetic acid 42.4 43.8 a 45.7 3.3
91 Propionic acid 36.9 37.6 .D 38.5 1.6
92 Butyric acid 337 334 i¢] 324 1.3
93 Valeric acid 31.6 31.9 8 29.3 2.3
94 Hexanoic acid 30.2 31.2 a 27.6 2.6
95° Heptanoic acid 28.4 31.4 .3 26.6 1.8
96 Octanoic acid 274 30.8 8B 26.3 11
97 Nonanoic acid 26.7 31.1 4 26.7 0.0
98 Oxalic acid 74.6 63.3 12 74.3 0.3
99 Malonic acid 66.0 62.3 3 62.9 3.1
10¢¢ Succinic acid 60.3 62.2 9 61.4 11
101 Glutaric acid 55.6 54.3 3 55.9 0.3
102 Adipic acid 52.4 51.4 .0 52.3 0.1
103 Pimelic acid 49.9 48.3 .a 50.0 0.1
104 Suberic acid 47.2 45.6 .a 47.5 0.3
105° Azelaic acid 45.9 44.5 4 46.4 0.5
106 Seacic acid 44.9 41.6 3 44.4 0.5
107 Methanesulphonic acid 50.5 57.2 .76 51.2 0.7
108 Ethanesulphonic acid 42.7 45.5 .82 41.4 1.3
109 Propanesulphonic acid 37.5 36.9 60 34.9 2.6
11¢° Butanesulphonic acid 33.9 35.9 .02 33.0 0.9
111 Pentanesulphonic acid 31.4 325 11 30.7 0.7
112 Hexanesulphonic acid 29.4 27.4 .02 28.5 0.9
113 Octanesulphonic acid 26.2 24.0 22 26.4 0.2
114 Nonanesulphonic acid 25.1 20.4 74 25.7 0.6
115 Dodecanesulphonic acid 22.3 21.1 21 25.1 2.8

a Experimental mobility.
b Predicted mobility by HM.
¢ Absolute value of (calculated experimental).
d Predicted mobility by RBFNN.
€ Compounds in the test set.
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is the back-propagation (BP) neural networks due to its sim- 2.2. Descriptor calculation
ple architecture yet powerful problem-solving ability. How-
ever, the BP neural network suffers from a number of weak-  The structures of the compounds were drawn with Hy-
nesses, including the need for a large number of controlling perChem 4.0 programni29] and exported in a file format
parameters, difficulty in obtaining a stable solution. How- suitable for MOPAC. The geometry optimization was per-
ever, the radial basis function neural network (RBFNN) has formed with the semiempirical quantum method P38]
some advantages such as short training times, few free pausing the MOPAC 6.0 prograf31]. All the geometries had
rameters to be adjusted by fast linear methods. The opti-been fully optimized without symmetry restrictions. In all
mization of its topology and learning parameters are easy cases frequency calculations have been performed in order
to implemen{22]. Many problems in chemistry and chemi- to ensure that all the calculated geometries correspond to
cal engineering have been successfully solved by the use oftrue minima. The MOPAC output files were used by the
RBFNN [23-28] CODESSA program to calculate five classes of descriptors:
In the present work, the CODESSA program was used constitutional (number of various types of atoms and bonds,
for the calculation of the descriptors and for the statistical number ofrings, molecular weight, etc.); topological (Wiener
analysis to obtain multi-parameter QSMR equations describ-index, Randic indices, Kier-Hall shape indices, etc.); geo-
ing the absolute mobilities of 115 carboxylic and sulphonic metrical (moments of inertia, molecular volume, molecular
acids. The heuristic method and RBFNN were utilized to es- surface area, etc.); electrostatic (minimum and maximum par-
tablish quantitative linear and nonlinear relationship between tial charges, polarity parameter, charged partial surface area
the electrophoretic mobility and the molecular structure, re- descriptors, etc.); and quantum chemical (reactivity indices,
spectively. The aim of the present study was to establish adipole moment, HOMO and LUMO energies, etc.).
QSMR model that could be used for the prediction of abso-
lute mobilities of carboxylic and sulphonic acids from their 2.3. The heuristic method
molecular structures alone, and at the same time, to seek for
the important structural features related to the electrophoretic ~ The heuristic multilinear regression procedures available
mobility of these compounds. Compared with previous work, inthe framework of the CODESSA program were used to per-
the data set used in our investigation is more diverse and theform a complete search for the best multilinear correlations
models developed are more general and practical. with a multitude of descriptors. These procedures provide
collinearity control (i.e., any two descriptors intercorrelated
above 0.8 are never involved in the same model) and imple-

2. Method ment heuristic algorithms for the rapid selection of the best
correlation, without testing all possible combinations of the
2.1. Data set available descriptors. The heuristic method of the descrip-

tor selection proceeds with a pre-selection of descriptors by

The values of the absolute mobilities of 115 carboxylicand eliminating (i) those descriptors that are not available for each
sulphonic acids studied were taken from the work of Yigid structure, (ii) descriptors having a small variation in mag-
[4]. Table 1contained the absolute mobility of the data set, in nitude for all structures, (iii) descriptors that givé-aest’s
10-5cm? s~ 1V ~1. The compounds consist of 100 carboxylic value below 1.0 in the one-parameter correlation, and (iv) de-
and 15 sulphonic acids with various groups, heteroatoms andscriptors whosevalues are less than the user-specified value,
structural isomers. Through the comparison of experimental etc. This procedure orders the descriptors by decreasing cor-
values of the absolute mobilities of the carboxylates (Nos. relation coefficient when used in one-parameter correlations.
90-95, 97) and sulphonates (Nos. 107-113), it could be seerThe next step involves correlation of the given property with
that the absolute mobilities of the sulphonates are almost(i) the top descriptor in the above list with each of the re-
greater than that of the corresponding carboxylates, exceptmaining descriptors and (ii) the next one with each of the re-
for octanesulphonic acid (No. 113) and nonanoic acid (No. maining descriptors, etc. The best pairs, as evidenced by the
97). Of 100 carboxylic acids, there are 73 monofuntional, highestF-values in the two-parameter correlations, are cho-
26 difunctional, and 1 trifunctional. The compounds contain sen and used for further inclusion of descriptors in a similar
77 aliphatic and 38 aromatic acids. The data set was splitmanner.
randomly into a 92 member training set and an external pre- The goodness of the correlation is tested by the coeffi-
diction set of 23 compounds. Of the training set, there are 61 cient regressionR?), the F-test ), the standard deviation
aliphatic, 31 aromatic acids, 70 monofunctional, 22 difunc- (s). The stability of the correlations was tested against the
tional acids. Of the test set, there are 16 aliphatic, 7 aromaticcross-validated coefficienR?,. The R, describes the sta-
acids, 18 monofunctional, 4 difunctional, and 1 trifunctional bility of a regression model obtained by focusing on the sen-
acids. The training set was used to adjust the parameters ositivity of the model to the elimination of any single data
the models and the test set was used to evaluate its predicpoint. Briefly, for each data point, the regression is recalcu-
tion ability. Leave-one-out (LOO) cross-validation was used lated with the same descriptors but for the data set without
to prevent the network from overfitting. this point. The obtained regression is used to predict the value
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wherey; is thekth output unit for the input vectox, wy; is
the weight connection between tkth output unit and thgh
hidden layer unith; is the notation for the output of tjeh
"/ RBF unit, andb; is the bias.
X —» S/ ' RBFNN are completely specified by choosing the number
unitsn, of radial basis functions, the centgrand widthr ; of
XL X eachradial basis function, and the connection weightbe-
X3 —» ‘(‘.' > tweenjth hidden layer unit ankth output unit. In this paper,
x4 . Q\%. the forward subset selection routine proposed by[82133]
\\ was used to select the centers from training set samples. The
\ . advantages of this selection is that it can determine the num-

\ ber of the hidden layer units simultaneously and there is no
‘ need to fix the number of the hidden layer units in advance.
The adjustment of the connection weight between the hidden
layer and the output layer is performed using a least-squares
solution after the selection of centers and width of radial basis

Input layer Hidden layer Output layer functions.
The overall performance of RBFNN was evaluated in
Fig. 1. The typical architecture of the RBFNN. terms of root-mean-square (RMS) error which was defined
as below:
of this point, and the set of estimated values calculated in this e 2
way is correlated with the experimental values. RMS = 2210k — 3) (15)
The Heuristic method usually produces correlations 2—-5 ns

times faster than other methods, with comparable quality 15 compare the predicted mobility with the corresponding
[21]. The rapidity of calculations from the heuristic method gy perimental value, the absolute average relative deviation

renders it the first method of choice in practical research. (AARD) as an accuracy criterion was computed by:
Thus, we used this method for our calculations.

100 & -3
o AARD = — Y <|y"—yk|> (16)
2.4. Radial basis function neural networks theory ns ‘= Yk

The theory of RBFNN has been adequately described in In Eas. (15) and (16)y; is the desired outpuy; the actual
Refs.[23-28] Here only a brief description of RBFNN prin- ~ Output of the network, ands is the number of compounds
ciple was given. RBFNN can be described as a three-layer" analyzed set. To compare the results obtained by HM and
feedforward structure, as presented schematicaliignl RBFNN straightforwardly, the RMS and AARD errors was

The RBFNN consists of three layers: the input layer, the !SO calculated in the HM model. _
hidden layer and the output layer. The input layer does not ~ All calculation programs implementing RBFNN were
process the information; it only distributes the input vectors Writtenin M-file based on basis MATLAB script for radial ba-
to the hidden layer. Each neuron on the hidden layer employsSiS function neural networK$2,33} The scripts were com-
a radial basis functions as a nonlinear transfer function to Piléd using MATCOM compiler running on a Pentium IV
operate on the input data. In general, there are several radiaPersonal computer with 256M RAM.
basis functions (RBFs): linear, cubic, thin plate spline, Gaus-
sian, multi-quadratic and inverse multi-quadratic. The most ) ]
often used RBF is a Gaussian function that is characterized3: Results and discussion
by a centerg;) and width ¢ ;). In this study, the Gaussian was o
selected as the radial basis functions. The nonlinear transfor-3-1. Results of the heuristic method

mation with RBF in the hidden layer is given as follow: .
About 600 descriptors were calculated by the CODESSA

—[lx = ¢j|[? program for each of the compounds. After the heuristic reduc-

hj(x) = exp -2 (13) tion the pool of descriptors was reduced to 246. A variety of
J subset sizes was investigated to determine the optimum num-

in which h; is the notation for the output of tith RBF unit, ber of descriptors in amodel. When adding another descriptor

c; andr; are the center and width of thté RBF, respectively. did not improve significantly the statistics of a model, it was

The operation of the output layer is linear, which is given in determined that the optimum subset size had been achieved.

Eq. (14) The influences of the number of the descriptors on the cor-
relation coefficientR?) and the standard deviatios) vere

yi(x) = Z wyjh j(x) + by (14) shown inFigs. 2 and 3respectively. Fronfrigs. 2 and 3it
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Table 2

Descriptors, coefficients, standard error, anvalues for the linear mod@P

Descriptor Chemical meaning Coefficient Error t-test
(Constant) Intercept 12518 1064 1176
NDB Number of double bonds 87 094 894
WPSA-3 WPSA-3 weighted PPSA (PPSA3 TMSA/1000) [quantum-chemical PC] —-1.20 012 —10.04
AIC2 Average information content (order 2) —-1172 124 —9.42
RNCG RNCG relative negative charge (QMNEG/QTMINUS) [quantum-chemical PC] —9378 1364 —6.88
HDCA2 HA dependent HDCA-2/TMSA [Zefirov's PC] 1781 44828 398
ACICO Average complementary information content (order 0) -9.01 179 —5.04
TMEER Tot molecular 1-center E-E repulsion/no. of atoms -0.17 004 —4.47

3 R = 0.88;s=3.93; RMS = 3.76; AARD = 7.89%) = 92;F = 87.22;R2, = 0.83.
b Further discussion of the chemical meaning of the descriptors was gigeciion 3.1of the text.

1.0 Table 3
Correlation matrix of the seven descriptors used in this &ork
0.9 - -/-/' NDB WPSA-3 AIC2 RNCG HDCA2 ACICO TMEER
/
] /l/. NDB 1.000 0.115 0.064—-0.558 —0.256 0772 Q204
“Q 0.8 WPSA-3 1.000 -0.151 —0.677 —0.685 0397 —0.708
= AIC2 1.000 —0.208 0.135-0.204 Q277
5 0.7 RNCG 1.000 0.588-0.570 Q182
é ’ HDCA2 1.000-0.354 Q0433
§ ACICO 1.000 —0.009
5 0.6 4 TMEER 1000
5 2 The definitions of the descriptors were giverilable 2
§ 0.5
0.4 . shown inTable 3 The linear correlation coefficient value of
T T T . T T . T T . each two descriptors is <0.80gble 3, which means the de-

2 3 4 8 9 0 - . . . - .
¢! o0 7 : scriptors were independent in this multilinear analysis. The

values of the 7 selected parameters of each compound are
Fig. 2. Influence of the number of descriptors on the correlation coefficient ava'!able a_§upplementary Dataa _SClencedlreCt (the elec-
(R?) of the regression models. tronic publication outlet). The obtained model has a correla-
tion coefficieniR? = 0.88,F = 87.22, with a standard deviation
f9) of 3.93 (10> cn? st v~1), and the cross-validated co-
efficient R%, = 0.83. This model gave an RMS error of 3.76
electrophoretic mobility units for the training set, and the
rcorresponding AARD was 7.89%.

By interpreting the descriptors in the regression model, it
is possible to gain some insight into factors that are likely
to govern the absolute mobilities of the carboxylic and sul-

number of descriptors

can be seen that seven descriptors appear to be sufficient for
successful regression model. The multilinear analysis of the
absolute mobilities values for the 92 compounds of the train-
ing set resulted in the seven-parameter model summarized i
Table 2 and the correlation matrix of these descriptors was

7 phonic acids in CE. Due to the diversity of the molecules
] A studied in this work, the electrophoretic mobility of the com-
*7 pounds related to molecular structure in a complex way. Of
] the seven descriptors, one is constitutional, two are topo-
5 I logical, one is electrostatic and three are quantum-chemical
g ] descriptors. These descriptors encode different aspects of the
g 0 molecular structure. As mentioned in Introduction two fun-
A damental frictional factors are found to be important in the
§ 37 ~_ electrophoretic mobility of a solute in CE. One is hydrody-
g — . namic friction factor, which is related to the molecular size
47 \-\ and/or mass of solute, and the other is dielectric friction fac-
— tor, which is related to the charge distribution within the so-
3 i T T T 1 7 T T — lute. The descriptors in the present model can account for

these friction factors. Average information content (order 2)
(AIC2) and average complementary Information content (or-

Fig. 3. Influence of the number of descriptors on the standard deviajion (  der 0) (ACICO) belong to topological descriptors. AIC2 and
of the regression models. ACICO describe the size, shape and branching information of

number of descriptors
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the molecules and give some information about the hydrody- 80 -
namic friction factors. AIC2 and ACICO have negative coef-
ficients in the linear model, which indicates that the absolute _ 70
mobility is inversely proportional to these descriptors. The
number of double bonds (NDB), a constitutional descriptor,
describes the degree of the delocalization of electron and af-
fects the charge distribution within the molecule. Thus, NDB
has some correlation with the dielectric friction. NDB has a
positive coefficient in the linear model, which indicates that
this structural feature makes positive contribution to the abso-
lute mobility. HA dependent HDCA-2/TMSA [Zefirov’s PC]
(HDCAZ?) is an electrostatic descriptor. HDCAZ2 is hydrogen
donor charged solvent-accessible surface area, and this de | € °

scriptor represents the sum of solvent-accessible surface are = %] .

of the H-bonding donor atoms. HDCAZ reflects character- S A I S

istics of the charge distribution of the molecule, so it can

affect the dielectric friction term. This descriptor has a posi-

tive coefficient in the linear model, which indicates that the Fig. 4. Predicted vs. experimental electrophoretic mobilities (HM).
absolute mobility is proportional to this descriptor. The three

guantum-chemical descriptors are WPSA-3 (weighted PPSA3.2. Result of RBFNN

(PPSA3 TMSA/1000) [Quantum-Chemical PC]), RNCG

(relative negative charge (QMNEG/QTMINUS) [quantum- From Table 1andFig. 4, it can be seen that the model
chemical PC]), and TMEERL1 (tot molecular 1-center E-E of the heuristic method was not sufficiently accurate (RMS
repulsion/# of atoms). WPSA-3 is equal to atomic charge = 419, AARD = 8.68%) showed the factors influencing the
weighted partial positive surface area (PPSA3) multiplied by electrophoretic moblility of these compounds were complex
total molecular surface area (TMSA). RNCG is the relative and not all of them were linear correlation with the absolute
negative charge of the molecule. The electron—electron repul-mobility. So, we built the nonlinear prediction model by
sion energy describes the electron repulsion driven processef®RBFNN to further discuss the correlation between the molec-
in the molecule and may be related to the conformational ular structure and the absolute mobility based on the same
(rotational, inversional) changes or atomic reactivity in the subset of descriptors. Such a RBFNN can be designed as
molecule[34]. The quantum-chemical descriptors such as 7-ni-1 net to indicate the number of the units in the input, the
WPSA-3, RNCG, and TMEER1 represent or depend directly hidden, and the output layer, respectively. The optimal width
on the quantum-chemically calculated charge distribution in was determined by experiments with a number of trials by
the molecules, and therefore can also explain the dielectrictaking into account of the model selection criterion: a width
friction contribution in determination of electrophoretic mo- <1 gives poor prediction ability, varying the width indicates
bility. The three descriptors, WPSA-3, RNCG, and TMEER1, width has little effect on the performance of RBFNN, if width

all have negative coefficient in the linear model, which indi- exceeds 5. So we choicely computed the width from 1 to
cates that the absolute mobility is inversely proportional to 5, every 0.1. Each minimum error on LOO cross-validation

® Training set

*  Test set * .
60 o *

50

u *
40 X .*‘E e ®

30 o* 'i

icted clectrophoretic mobility by HM
[ ]
&
%
L]

experimental electrophoretic mobility

these descriptors. was plotted versus the widtfrig. 5 and the minimum was
From the above discussion, it can be seen that all the

descriptors involved in the model have physical meaning, 557

and these descriptors can account for the structural fea- ] ’

tures responsible for the electrophoretic mobilities of the
carboxylic and sulphonic acids. According to theest val-
ues (able 2, the more relevant descriptors are a quantum-
chemical descriptor (WPSA-3) and a topological descriptor
(AIC2).

With the test setTable J the prediction results were ob-
tained, confirming the predictive capability of the model. The
statistical parameters weR® = 0.77;F = 71.67;n = 23; s
= 5.44. The heuristic model produced an RMS error of 5.59
mobility units for the test set, 4.19 for the whole data set, and
the corresponding AARD was 11.84, 8.68%, respectively. ]‘50‘8 5 16 20 24 28 32 36 40 44 48 52
Fig. 4 showed a plot of the calculated versus experimental width of RBFNN

electrophoretic mobilities for all the 115 acids studied, the
training set and the test set. Fig. 5. The width of RBFNN vs. RMS error on LOO cross-validation.

45
4.0 ’

3.5

s

v/V\r AV

2.5

2.0 A

RMS error on LOO cross-validation
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experimental electrophoretic mobility

ter results with good predictive ability than linear model, so
we can conclude that (1) the proposed linear model by the
Z 70+ g heuristic method could identify and provide some insight into
= X what structural features are related to the absolute mobility
j% 60 e Training set u of the carboxylic and sulphonic acids. (2) Nonlinear model
z % Test set . . can describe accurately the relationship between the struc-
2 - ¥ tural parameter and the absolute mobilities of the 115 car-
= X boxylic and sulphonic acids. (3) RBFNN proved to be a very
Tg 40 R promising tool in the prediction of electrophoretic mobility.
= * ..* Nonlinear models using RBFNN based on these same sets
8 0 % " of descriptors produced even better models with good pre-
s i} $ 5% dictive ability. The training procedure is also simple because
ko there are only two parameters to be optimized: the number of
i units in the hidden layer and the width of radial basis func-
o IS A % tion. If we add to the increasing accuracy of RBF networks,

the lack of difficulty to find an optimum architecture and

the almost instant training, it will be easily concluded that
RBFNN can be a significant partner for the development of
different quantitative structure—mobility relationship system.
chosen as the optimal condition. In this cases 2.8 and Additionally, the compounds studied in this work include car-
n, = 19. boxylic, sulphonic, aliphalic, aromatic, monofunctional, di-

From the best network, the inputs in the test set were pre-functional, and tridunctional acid, etc., which cover almost
sented with it, and the results with RBFNN were obtained. all types of organic acids. The models we developed are gen-
They were shown iffable 1andFig. 6. The network gave an  eral and applicable for the prediction of the absolute mobility
RMSerror of 1.78 electrophoretic mobility units for the train-  of the organic acids. Furthermore, the proposed approach can
ing set, 2.04 for the test set, and 1.83 for the whole set, thealso be extended in other QSPR investigation.
corresponding correlation coefficien®%f were 0.97, 0.97,
and 0.97, and the corresponding AARD were 3.54, 5.01, and
3.84%, respectivelyFig. 6 proved that the RBFNN model
was statistically stable and fitted the data well.

Analysis of the result obtained indicates that the models 1,5 Juthors thank the Association Eranco-Chinoise pour

we proposed can .c_o'rrectly represgnt the reIation;hip petweer]a Recherche Scientifigue & Technique (AFCRST) for sup-
the absolute mobilities of carboxylic and sulphonic acids and porting this study (Programme PRA S| 02-02).

molecular descriptors calculated solely from molecular struc-
tures, moreover, the seven selected descriptors can represent

the features of the compounds responsible for their elec-

trophoretic mobility behavior. By comparison of the results APPendix A. Supplementary data

from the heuristic method and RBFNN, it can be seen that

the RMS and AARD errors of RBFNN are much lower than ~ Supplementary data associated with this article can
that of the HM. The performance of RBENN models seems be found, in the online version, at doi:10.1016/j.chroma.
to be better than that of the heuristic method, which indicates 2004.07.043.

that nonlinear model can simulate the relationship between
the structural descriptors and the mobility of the acids more
accurately.

Fig. 6. Predicted vs. experimental electrophoretic mobilities (RBFNN).
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