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Abstract

A quantitative structure–mobility relationship (QSMR) was developed for the absolute mobilities of 115 carboxylic and sulphonic acids in
capillary electrophoresis based on the descriptors calculated from the structure alone. The heuristic method (HM) and radial basis function
neural networks (RBFNN) were utilized to construct the linear and nonlinear prediction models, respectively. The prediction results were in
a nits for the
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greement with the experimental values. The HM model gave an root-mean-square (RMS) error of 3.76 electrophoretic mobility u
raining set, 5.59 for the test set, and 4.19 for the whole data set, while the RBFNN gave an RMS error of 1.78, 2.04, and 1.83, re
he heuristic linear model could give some insights into the factors that are likely to govern the mobilities of the compounds, ho
rediction results of the RBFNN model seem to be better than that of the heuristic method.
2004 Elsevier B.V. All rights reserved.
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. Introduction

.1. Summary of the calculation/prediction of
lectrophoretic mobility in CE

Capillary electrophoresis (CE) has become an important
eparation technique in analytical chemistry. This technique
as been used to separate analytes ranging from small inor-
anic and organic ions to macromolecular species such as
NA and proteins. Its speed, resolving power, efficiency,
nalyte solubility and stability, minimal reagent and sol-
ent consumption, compatibility with mass spectrometry and
vailability of several modes has made CE a very popu-

ar technique and alternative to other analytical methods
ike high performance liquid chromatography (HPLC). Elec-
rophoretic mobility is the most important parameter gov-
rning the separation of solutes in CE. According to Born’s

∗ Corresponding author. Tel.: +86 931 891 2578; fax: +86 931 891 2582.
E-mail address:snowmoun@21cn.com (Z. Hu).

model (see[1]), the mobility of an ion (µ) can be expresse
by:

µ = q

fh + fdl
(1)

whereq is the effective charge on the ion andfh and fdl
are hydrodynamic (size- and shape-related) and diele
(charge-induced) frictional drag. The hydrodynamic fric
associates with moving the solute through a continuum
vent of finite viscosity. The dielectric friction is due to
interaction between the moving ion and the adjacent so
dipoles[1]. Absolute mobility is a constant characteristic
an ion. Typically, absolute mobility (µ0) is measured expe
mentally either by extrapolating the mobilities observed
a range of ionic strength to infinite dilution or by measu
their limiting equivalent conductance[2].

During method development in CE to develop an o
mized separation, the analysts generally have to emp
large number of experiments, which is often costly and t
consuming. The basic mechanism in electrophoresis i
021-9673/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2004.07.043
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differences in the analyte’s mobility and any attempt to pro-
vide a computation method to calculate the mobility in a cer-
tain practical conditions could provide a useful tool for faster
method optimization process in CE. Therefore, developing
theoretical models to predict the electrophoretic behaviour
of analytes are necessary. However, only a few reports have
investigated the quantitative correlation between the molecu-
lar parameters and the responses obtained in CE. Because the
number of such studies is limited and to provide a summary
of them, a brief review was presented here.

The computational methods used in the previous studies
to calculate/predict electrophoretic mobility can be classi-
fied into two categories. One approach is to use mathemat-
ical equation to correlate electrophoretic mobility with the
molecular parameters[2–7].

An approximation of mobility was proposed for peptides
in Offord’s equation[3]:

µ = Cq

M2/3
(2)

whereC is a proportionality constant,q the charge on the
analyte andM is the molecular mass of the ion.

Based on three assumptions: (1) the molecular massM
can be treated as composed of effective massE and hidden
massH,M = E + H; (2) the mobilityµ is proportional to the
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Li et al. used Pitts equation to account for the effect of ionic
strength on the mobilities in capillary zone electrophoresis
using 55 carboxylates, phenols, sulfonates, and monoamines
as examples[6]. The influence was represented as follows:

µ = µ0 − Cq

√
I

1 + 2.4
√

I
(6)

whereµ0 is the infinite dilution mobility of the ion,C a con-
stant,q the charge on the solute anion, andl is the ionic
strength of the buffer.

Li and Lucy correlated the absolute electrophoretic mo-
bility of 39 aromatic carboxylates and sulfonates with mod-
els incorporating both hydrodynamic and dielectric frictions
represented as follows[7]:

µ0 = 17.3 × 10−4q

V 1/3 + 44.6 (z2/V )
(7)

and

µ0 = 18.9 × 10−4q

f/f0V 1/3 + 40.8 (z2/V )
(8)

whereq is the charge number,V the molecular volume, and
f/f0 is a frictional correction ratio. The obtained percentage
errors forEqs. (7) and (8)are 4.4 and 4.0%, respectively.
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hargeq and inversely proportional to the effective mas
he power 2/3; and (3) bothEandH are additive functions o
omposition, Wrónski proposed the equation[4]:

= 668qE−2/3 (3)

he mobilities of about 200 carboxylic, sulphonic, and am
cids calculated byEq. (3)yields an average relative error
1.5% for organic acids and±0.8% for peptides.
Fu and Lucy predicted the absolute mobility of 34 aliph

mines and other 20 monoamines by the equation[2]:

0 = 6.39× 10−3

M0.620
r + 0.221Hw − 0.157S

(4)

hereMr is the molecular mass of the analyte,Hw represent
he mean water of hydration calculated by McGowan’s f
ent addition method andSis an empirical shape index. T
est model yields an average prediction error of 4.1% fo
liphatic amines, 7.2% for 7 monoamines, and 3.3% fo
onoamines, respectively.
Fu et al. then developed an equation based on the

orn’s model for calculating the absolute mobility of
mines and 15 aliphatic carboxylates employing molar
me (V) and acid/base dissociation constant (pK) [5]. The
quation is formulated as:

0 = C0

VC1 + C2pK
(5)

hereC0–C2 are the model constants. The obtained ave
rrors for amines and aliphatic carboxylates are 4.1 and 3
espectively based on correlative equations.
The other methods are more empirically based on qu
ative structure-property relationship (QSPR) approache
ng the techniques such as multiple linear regression, arti
eural network[8–13], and support vector machine[14].

Multiple linear regression (MLR) technique was u
o establish the models for predicting the mobilities of
avonoids by means of the topological indices and 23 m
ls of two-indices were generated with similar statistica
ults (R≥ 0.93, relative standard error≤ 10%) in the work
f Liang et al.[8].

A comparative study between MLR and artificial n
al networks (ANNs) has been carried out employing e
rophoretic mobility of 13 sulfonamides by Jalali-Heravi a
arkani-Nejad[9]. The linear models they proposed w

epresented as follows:

e = C0 + C1�Hf + C2 PPCH+ C3 SA (9)

nd

e = C4 + C5�Hf + C6 PPCH+ C7pK (10)

hereµe is the effective electrophoretic mobility,�Hf the
eat of formation of anions, PPCH denotes maximum p

ive partial charge on the anions, SA represents the su
rea, pK is p-function of dissociation constant, and C0–C7 are

he model constants. A non-linear 3-4-2 ANN was gener
sing the three descriptors of�Hf , PPCH and SA as inpu

or the anionic sulfonamides and a 3-6-1 ANN was gener
sing�Hf , PPCH and pK for the cationic sulfonamides. T
uthors concluded that the ANN model shows the super
ver the MLR model for sulfonamide data.
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In the same way, Jalali-Heravi and Garkani-Nejad devel-
oped models for the prediction of the electrophoretic mobil-
ities of 31 isomeric alkyl- and alkenylpyridines in capillary
electrophoresis[10]. The three descriptors reciprocal of Van
der Waals radius of the molecules (RVDW−1), principal mo-
ment of inertia of the molecules around thexaxis (MOx), and
dipole moment of the molecules (DIMO) which are selected
by the MLR technique were used to as inputs for the ANN.
The neural network is a fully connected back-propagation
model with a 3-6-1 architecture. Standard error of training
and prediction are 6.28 and 5.11%, respectively, for the MLR
model and 1.03 and 1.20%, respectively, for the ANN model.

In the previous work of our laboratory, Li et al. con-
structed a model to estimate the electrophoretic mobilities
of 56 aliphatic carboxylates and amines by means of a multi-
layer neural network using extended delta-bar-delta (EDBD)
algorithm[11]. The molecular mass (W), molecular volume
(V), the code (+1 represent basic solute and−1 represent
acid solute) of acid and base and pK value were used as in-
put parameters of the neural networks. The average absolute
prediction errors in the training, validation and test sets are
2.19, 3.65 and 3.22%, respectively.

Jouyban proposed a QSPR model to calculate the log-
arithm of the electrophoretic mobility of five data sets us-
ing structural descriptors computed by HyperChem software
[

l

w TE
s n,
M -
s is. The
a g of
e ates,
1 des,
a ively.

be-
t s in
d nic
a LR
a r
r

µ

w cu-
l ent,
A
e non-
l
0

In our latest work in this area, MLR, RBFNN, and the sup-
port vector machines (SVM) were used to develop a predic-
tive model for the absolute mobility of 58 aliphatic and aro-
matic carboxylic acids based on four molecular descriptors
calculated from the structure alone[14]. The selected four
descriptors are average bonding information content (order
0) (ABIC0), ZX Shadow/ZX Rectangle (ZXS/ZXR), count
of H-donors sites [Zefirov’s PC] (CHDS), and refractivity
(REF). The correlation coefficient in absolute mobility pre-
dictions for the whole data set given by MLR, RBFNN, and
SVM are 0.947, 0.960, and 0.984, respectively.

Of those previous studies that aimed at predicting the
electrophoretic mobility, the most promising method is to
use QSPR approach. QSPR methods have been successfully
used to predict a variety of physical, chemical, and biologi-
cal properties of compounds. The advantage of this approach
over other methods lies in the fact that the descriptors used
can be calculated from structure alone and are not dependent
on any experimental properties. Once the structure of a com-
pound is known, any descriptor can be calculated no matter
whether they are found or not. So once a reliable model is
established, we can use this method to predict the property of
compounds. Therefore, quantitative structure–mobility rela-
tionship (QSMR) is a useful tool to predict the electrophoretic
mobilities avoiding long and tedious separation optimization.
Q tors
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12]. The proposed model is:

n µ = C0 + C1 PQ+ C2V
2/3

+ C3 TE + C4 �Hf + C5 MR (11)

here PQ is partial charge,V2/3 denotes surface area,
tands for total energy,�Hf represents heat of formatio
R is molecular refractivity andC0–C5 are the model con

tants which are calculated using a least squares analys
bsolute average relative deviation values for predictin
lectrophoretic mobilities of 10 beta-blockers, 26 benzo
1 non-steroidal anti-inflammatory drugs, 13 sulfonami
nd 18 amines are 1.0, 2.1, 0.8, 0.6, and 2.7%, respect

Wang et al. in our laboratory studied the relationship
ween the relative mobility of a group of 19 chlorophenol
ifferent buffers modified by eight kinds of different orga
dditives in capillary zone electrophoresis by means of M
nd radial basis function neural networks[13]. The linea
elationship was represented as follow:

r = −19.718+ 0.208GS+ 1.276HE− 1.377DIP

− 0.183AP+ 2.316EHOMO;

n = 152, F = 207.26, S.E.= 1.38 (12)

hereµr is the relative mobility, GS approximate mole
ar surface area, HE hydration energy, DIP dipole mom
P the polarity of the organic additives, andEHOMO is the
nergy of the highest occupied molecular orbital. The

inear RBFNN model gives the correlation coefficientR of
.986 for the training set and 0.980 for the test set.
SMR study can also tell us which of the structural fac
ay play an important role in the determination of the a

ute mobility of the compound.

.2. Techniques used and the aims of the present work

One of the important problems for the QSPR appl
ions is the numerical representation (often called mo
lar descriptor) of the chemical structure. The built mo
erformance and the accuracy of the results are strong
endent on the way the structural representation was

ormed. Various numerical representations of the compo
ere proposed in QSPR studies: constitutional and t

ogical descriptors; numerical code; quantum chemistry
criptors, etc. The Software CODESSA, developed by
ritzky group, enables the calculation of a large numbe
uantitative descriptors based solely on the molecular s

ural information [15–17] and codes this chemical info
ation into mathematical form. CODESSA combines

erse methods for quantifying the structural informa
bout the molecule with advanced statistical analysis t

ablish molecular structure–property/activity relationsh
ODESSA has been applied successfully in a variet
SPR analyses[18–21].
Neural networks have been applied to QSPR analysis

he late 1980s due to its flexibility in modeling nonlin
roblem, mainly in response to increased accuracy dem
hey have been widely used to predict many physicoch
al properties. There exist many models of neural netw
hich have different approaches both in architecture an

earning algorithms. The most popular neural network m
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Table 1
The compounds and the predicted electrophoretic mobilities (10−5 cm2 s−1 V−1)

No. Compounds Experimentala CalculatedHM
b Abs errorc CalculatedRBFNN

d Abs errorc

1 Fluoroacetic acid 43.9 36.2 7.7 43.8 0.1
2 Trifluoroacetic acid 42.5 42.4 0.1 42.2 0.3
3 Chloroacetic acid 41.9 39.8 2.1 39.4 2.5
4 Dichloroacetic acid 39.4 39.7 0.3 39.7 0.3
5e Trichloroacetic acid 36.2 40.7 4.5 35.5 0.7
6 3-Chloropropionic acid 36.8 37.0 0.2 39.2 2.4
7 2-Chlorobutyric acid 32.8 35.0 2.2 32.8 0.0
8 5-Chlorovaleric acid 30.8 32.2 1.4 31.0 0.2
9 Bromoacetic acid 38.8 38.0 0.8 40.7 1.9

10e 2-Bromopropionic acid 33.4 38.3 4.9 36.7 3.3
11 2-Bromobutyric acid 30.8 34.8 4.0 32.4 1.6
12 4-Bromobutyric acid 32.8 32.3 0.5 31.9 0.9
13 5-Bromovaleric acid 30.8 31.7 0.9 30.8 0.0
14 2,3-Dibromopropionic acid 32.3 33.7 1.4 31.9 0.4
15e Tribromoacetic acid 34.9 36.1 1.2 35.5 0.6
16 Iodoacetic acid 40.2 38.8 1.4 39.9 0.3
17 3-Iodopropionic acid 34.9 37.7 2.8 35.4 0.5
18 4-Iodobutyric acid 32.9 32.6 0.3 32.0 0.9
19 5-Iodovaleric acid 30.8 32.0 1.2 30.9 0.1
20e 3,4-Dibromofluoroacetic acid 36.9 25.3 11.6 39.4 2.5
21 Chlorodibromoacetic acid 34.9 38.4 3.5 35.0 0.1
22 Glycolic acid 42.3 43.0 0.7 40.4 1.9
23 Lactic acid 36.5 41.3 4.8 40.7 4.2
24 2-Hydroxybutyric acid 34.2 36.6 2.4 34.6 0.4
25e Glyceric acid 36.3 40.2 3.9 38.2 1.9
26 Glucuronic acid 26.6 32.3 5.7 26.2 0.4
27 Gluconic acid 27.2 31.5 4.3 27.7 0.5
28 2-Chloro-3-hydroxybutyric acid 32.9 34.5 1.6 34.6 1.7
29 Glyoxalic acid 37.8 48.5 10.7 38.2 0.4
30e Pyruvic acid 40.4 51.3 10.9 40.9 0.5
31 Trichlorolactic acid 34.2 36.6 2.4 34.6 0.4
32 Maleic acid 62.0 64.0 2.0 62.5 0.5
33 Fumaric acid 61.2 64.7 3.5 62.6 1.4
34 Tartaric acid 60.5 57.5 3.0 59.9 0.6
35e Citric acid 70.8 60.7 10.1 71.0 0.2
36 2-Ketoglutaric acid 59.0 54.6 4.4 58.9 0.1
37 Malic acid 59.0 52.7 6.3 60.2 1.2
38 Thiomalic acid 58.5 49.2 9.3 54.2 4.3
39 2,3-Dimercaptopropanesulphonic acid 34.4 34.3 0.1 35.2 0.8
40e 2-Hydroxyethanesulphonic acid 39.6 41.6 2.0 41.0 1.4
41 Cyclobutane-1,1-dicarboxylic acid 51.1 55.0 3.9 56.1 5.0
42 Cyclopentane-1,1-dicarboxylic acid 50.0 53.8 3.8 51.1 1.1
43 Cyclohexane-1,1-dicarboxylic acid 48.0 53.2 5.2 48.3 0.3
44 Methylmalonic acid 58.5 54.1 4.4 58.2 0.3
45e Methylethylmalonic acid 50.0 49.9 0.1 52.3 2.3
46 Propylmalonic acid 52.0 45.7 6.3 48.9 3.1
47 Diethylmalonic acid 49.5 48.5 1.0 48.6 0.9
48 Ethylpropylmalonic acid 47.0 44.7 2.3 45.9 1.1
49 Dipropylmalonic acid 46.0 44.3 1.7 44.4 1.6
50e Oxaloacetic acid 56.0 52.7 3.3 53.0 3.0
51 3-Propylglutaric acid 47.0 43.4 3.6 47.6 0.6
52 Benzoic acid 34.4 34.2 0.2 34.5 0.1
53 Benzenesulphonic acid 38.7 39.2 0.5 35.1 3.6
54 p-Toluenesulphonic acid 31.1 31.3 0.2 34.0 2.9
55e o-Aminoenzoic acid 31.6 27.4 4.2 30.3 1.3
56 Sulphonic acid 33.7 33.1 0.6 35.2 1.5
57 p-Fluorobenzoic acid 33.4 29.5 3.9 33.3 0.1
58 p-Chlorobenzoic acid 33.4 28.5 4.9 33.7 0.3
59 m-Iodobenzoic acid 33.4 24.8 8.6 30.0 3.4
60e p-Bromobenzoic acid 31.5 28.0 3.5 34.5 3.0
61 p-Nitrobenzoic acid 32.1 30.6 1.5 30.6 1.5
62 3,5-Dinitrobenzoic acid 29.5 31.9 2.4 30.6 1.1
63 p-Toluic acid 29.1 28.1 1.0 30.7 1.6
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Table 1 (Continued)

No. Compounds Experimentala CalculatedHM
b Abs errorc CalculatedRBFNN

d Abs errorc

64 p-Ethylbenzoic acid 26.5 24.7 1.8 27.4 0.9
65e 2,3-Dimethylbenzoic acid 27.1 27.6 0.5 29.2 2.1
66 o-Isopropylbenzoic acid 24.7 27.5 2.8 28.0 3.3
67 2,4,6-Trimethylbenzoic acid 24.7 30.0 5.3 29.0 4.3
68 p-tert-Butylbenzoic acid 23.2 18.6 4.6 23.4 0.2
69 p-Hydroxybenzoic acid 34.0 33.6 0.4 34.7 0.7
70e Salicylic acid 35.4 38.5 3.1 34.9 0.5
71 2,4-Dihydroxybenzoic acid 32.0 37.8 5.8 31.1 0.9
72 3,4-Dihydroxybenzoic acid 34.4 32.7 1.7 33.5 0.9
73 Gallic acid 34.4 35.7 1.3 34.5 0.1
74 p-Methoxybenzoic acid 28.3 27.7 0.6 30.1 1.8
75e p-Ethoxybenzoic acid 26.6 23.7 2.9 27.7 1.1
76 2-Nitro-3-bromobenzoic acid 28.2 31.5 3.3 29.3 1.1
77 2-Nitro-3-chlorobenzoic acid 31.3 33.1 1.8 32.8 1.5
78 Phenol 34.4 39.4 5.0 31.5 2.9
79 p-Nitrophenol 33.4 30.7 2.7 34.2 0.8
80e 2,4-Dinitrophenol 31.3 40.6 9.3 29.5 1.8
81 Picric acid 31.5 35.9 4.4 31.1 0.4
82 p-Chlorophenol 33.4 33.1 0.3 33.1 0.3
83 2,4-Dichlorophenol 31.3 27.3 4.0 28.6 2.7
84 Vanillic acid 27.1 24.9 2.2 25.7 1.4
85e Cinnamic acid 28.3 39.7 11.4 32.0 3.7
86 Phenylacetic acid 31.7 34.0 2.3 31.6 0.1
87 Phenoxyacetic acid 27.8 33.1 5.3 33.9 6.1
88 Nicotinic acid 34.6 38.8 4.2 33.9 0.7
89 2-Naphthalenesulphonic acid 31.3 25.4 5.9 29.2 2.1
90e Acetic acid 42.4 43.8 1.4 45.7 3.3
91 Propionic acid 36.9 37.6 0.7 38.5 1.6
92 Butyric acid 33.7 33.4 0.3 32.4 1.3
93 Valeric acid 31.6 31.9 0.3 29.3 2.3
94 Hexanoic acid 30.2 31.2 1.0 27.6 2.6
95e Heptanoic acid 28.4 31.4 3.0 26.6 1.8
96 Octanoic acid 27.4 30.8 3.4 26.3 1.1
97 Nonanoic acid 26.7 31.1 4.4 26.7 0.0
98 Oxalic acid 74.6 63.3 11.3 74.3 0.3
99 Malonic acid 66.0 62.3 3.7 62.9 3.1

100e Succinic acid 60.3 62.2 1.9 61.4 1.1
101 Glutaric acid 55.6 54.3 1.3 55.9 0.3
102 Adipic acid 52.4 51.4 1.0 52.3 0.1
103 Pimelic acid 49.9 48.3 1.6 50.0 0.1
104 Suberic acid 47.2 45.6 1.6 47.5 0.3
105e Azelaic acid 45.9 44.5 1.4 46.4 0.5
106 Seacic acid 44.9 41.6 3.3 44.4 0.5
107 Methanesulphonic acid 50.5 57.2 6.7 51.2 0.7
108 Ethanesulphonic acid 42.7 45.5 2.8 41.4 1.3
109 Propanesulphonic acid 37.5 36.9 0.6 34.9 2.6
110e Butanesulphonic acid 33.9 35.9 2.0 33.0 0.9
111 Pentanesulphonic acid 31.4 32.5 1.1 30.7 0.7
112 Hexanesulphonic acid 29.4 27.4 2.0 28.5 0.9
113 Octanesulphonic acid 26.2 24.0 2.2 26.4 0.2
114 Nonanesulphonic acid 25.1 20.4 4.7 25.7 0.6
115e Dodecanesulphonic acid 22.3 21.1 1.2 25.1 2.8

a Experimental mobility.
b Predicted mobility by HM.
c Absolute value of (calculated− experimental).
d Predicted mobility by RBFNN.
e Compounds in the test set.
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is the back-propagation (BP) neural networks due to its sim-
ple architecture yet powerful problem-solving ability. How-
ever, the BP neural network suffers from a number of weak-
nesses, including the need for a large number of controlling
parameters, difficulty in obtaining a stable solution. How-
ever, the radial basis function neural network (RBFNN) has
some advantages such as short training times, few free pa-
rameters to be adjusted by fast linear methods. The opti-
mization of its topology and learning parameters are easy
to implement[22]. Many problems in chemistry and chemi-
cal engineering have been successfully solved by the use of
RBFNN [23–28].

In the present work, the CODESSA program was used
for the calculation of the descriptors and for the statistical
analysis to obtain multi-parameter QSMR equations describ-
ing the absolute mobilities of 115 carboxylic and sulphonic
acids. The heuristic method and RBFNN were utilized to es-
tablish quantitative linear and nonlinear relationship between
the electrophoretic mobility and the molecular structure, re-
spectively. The aim of the present study was to establish a
QSMR model that could be used for the prediction of abso-
lute mobilities of carboxylic and sulphonic acids from their
molecular structures alone, and at the same time, to seek for
the important structural features related to the electrophoretic
mobility of these compounds. Compared with previous work,
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2.2. Descriptor calculation

The structures of the compounds were drawn with Hy-
perChem 4.0 programme[29] and exported in a file format
suitable for MOPAC. The geometry optimization was per-
formed with the semiempirical quantum method PM3[30]
using the MOPAC 6.0 program[31]. All the geometries had
been fully optimized without symmetry restrictions. In all
cases frequency calculations have been performed in order
to ensure that all the calculated geometries correspond to
true minima. The MOPAC output files were used by the
CODESSA program to calculate five classes of descriptors:
constitutional (number of various types of atoms and bonds,
number of rings, molecular weight, etc.); topological (Wiener
index, Randic indices, Kier-Hall shape indices, etc.); geo-
metrical (moments of inertia, molecular volume, molecular
surface area, etc.); electrostatic (minimum and maximum par-
tial charges, polarity parameter, charged partial surface area
descriptors, etc.); and quantum chemical (reactivity indices,
dipole moment, HOMO and LUMO energies, etc.).

2.3. The heuristic method

The heuristic multilinear regression procedures available
in the framework of the CODESSA program were used to per-
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he data set used in our investigation is more diverse an
odels developed are more general and practical.

. Method

.1. Data set

The values of the absolute mobilities of 115 carboxylic
ulphonic acids studied were taken from the work of Wroński
4]. Table 1contained the absolute mobility of the data se
0−5 cm2 s−1 V−1. The compounds consist of 100 carbox
nd 15 sulphonic acids with various groups, heteroatom
tructural isomers. Through the comparison of experim
alues of the absolute mobilities of the carboxylates (N
0–95, 97) and sulphonates (Nos. 107–113), it could be

hat the absolute mobilities of the sulphonates are al
reater than that of the corresponding carboxylates, e

or octanesulphonic acid (No. 113) and nonanoic acid
7). Of 100 carboxylic acids, there are 73 monofuntio
6 difunctional, and 1 trifunctional. The compounds con
7 aliphatic and 38 aromatic acids. The data set was
andomly into a 92 member training set and an external
iction set of 23 compounds. Of the training set, there a
liphatic, 31 aromatic acids, 70 monofunctional, 22 difu

ional acids. Of the test set, there are 16 aliphatic, 7 arom
cids, 18 monofunctional, 4 difunctional, and 1 trifunctio
cids. The training set was used to adjust the paramet

he models and the test set was used to evaluate its p
ion ability. Leave-one-out (LOO) cross-validation was u
o prevent the network from overfitting.
orm a complete search for the best multilinear correlat
ith a multitude of descriptors. These procedures pro
ollinearity control (i.e., any two descriptors intercorrela
bove 0.8 are never involved in the same model) and im
ent heuristic algorithms for the rapid selection of the

orrelation, without testing all possible combinations of
vailable descriptors. The heuristic method of the des
or selection proceeds with a pre-selection of descripto
liminating (i) those descriptors that are not available for
tructure, (ii) descriptors having a small variation in m
itude for all structures, (iii) descriptors that give aF-test’s
alue below 1.0 in the one-parameter correlation, and (iv
criptors whoset-values are less than the user-specified va
tc. This procedure orders the descriptors by decreasin
elation coefficient when used in one-parameter correlat
he next step involves correlation of the given property
i) the top descriptor in the above list with each of the
aining descriptors and (ii) the next one with each of the
aining descriptors, etc. The best pairs, as evidenced b
ighestF-values in the two-parameter correlations, are
en and used for further inclusion of descriptors in a sim
anner.
The goodness of the correlation is tested by the co

ient regression (R2), theF-test (F), the standard deviatio
s). The stability of the correlations was tested agains
ross-validated coefficient,R2

cv. TheR2
cv describes the st

ility of a regression model obtained by focusing on the
itivity of the model to the elimination of any single d
oint. Briefly, for each data point, the regression is reca

ated with the same descriptors but for the data set wit
his point. The obtained regression is used to predict the
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Fig. 1. The typical architecture of the RBFNN.

of this point, and the set of estimated values calculated in this
way is correlated with the experimental values.

The Heuristic method usually produces correlations 2–5
times faster than other methods, with comparable quality
[21]. The rapidity of calculations from the heuristic method
renders it the first method of choice in practical research.
Thus, we used this method for our calculations.

2.4. Radial basis function neural networks theory

The theory of RBFNN has been adequately described in
Refs.[23–28]. Here only a brief description of RBFNN prin-
ciple was given. RBFNN can be described as a three-layer
feedforward structure, as presented schematically inFig. 1.

The RBFNN consists of three layers: the input layer, the
hidden layer and the output layer. The input layer does not
process the information; it only distributes the input vectors
to the hidden layer. Each neuron on the hidden layer employs
a radial basis functions as a nonlinear transfer function to
operate on the input data. In general, there are several radial
basis functions (RBFs): linear, cubic, thin plate spline, Gaus-
sian, multi-quadratic and inverse multi-quadratic. The most
often used RBF is a Gaussian function that is characterized
by a center (cj) and width (rj). In this study, the Gaussian was
selected as the radial basis functions. The nonlinear transfor-
m

h

i
c .
T n in
E

y

whereyk is thekth output unit for the input vectorx, wkj is
the weight connection between thekth output unit and thejth
hidden layer unit,hj is the notation for the output of thejth
RBF unit, andbk is the bias.

RBFNN are completely specified by choosing the number
unitsnk of radial basis functions, the centercj and widthrj of
each radial basis function, and the connection weightswkj be-
tweenjth hidden layer unit andkth output unit. In this paper,
the forward subset selection routine proposed by Orr[32,33]
was used to select the centers from training set samples. The
advantages of this selection is that it can determine the num-
ber of the hidden layer units simultaneously and there is no
need to fix the number of the hidden layer units in advance.
The adjustment of the connection weight between the hidden
layer and the output layer is performed using a least-squares
solution after the selection of centers and width of radial basis
functions.

The overall performance of RBFNN was evaluated in
terms of root-mean-square (RMS) error which was defined
as below:

RMS =
√∑ns

i=1(yk − ŷk)2

ns
(15)

To compare the predicted mobility with the corresponding
experimental value, the absolute average relative deviation
(

A

I l
o ds
i and
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re
w a-
s -
p IV
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3

3

SA
p duc-
t y of
s num-
b riptor
d as
d ieved.
T cor-
r
s

ation with RBF in the hidden layer is given as follow:

j(x) = exp

(
−||x − cj||2

r2
j

)
(13)

n whichhj is the notation for the output of thejth RBF unit,
j andrj are the center and width of thejth RBF, respectively
he operation of the output layer is linear, which is give
q. (14):

k(x) =
∑

wkjhj(x) + bk (14)
AARD) as an accuracy criterion was computed by:

ARD = 100

ns

ns∑
i=1

( |yk − ŷk|
ŷk

)
(16)

n Eqs. (15) and (16), yk is the desired output, ˆy the actua
utput of the network, andns is the number of compoun

n analyzed set. To compare the results obtained by HM
BFNN straightforwardly, the RMS and AARD errors w
lso calculated in the HM model.

All calculation programs implementing RBFNN we
ritten in M-file based on basis MATLAB script for radial b
is function neural networks[32,33]. The scripts were com
iled using MATCOM compiler running on a Pentium
ersonal computer with 256M RAM.

. Results and discussion

.1. Results of the heuristic method

About 600 descriptors were calculated by the CODES
rogram for each of the compounds. After the heuristic re

ion the pool of descriptors was reduced to 246. A variet
ubset sizes was investigated to determine the optimum
er of descriptors in a model. When adding another desc
id not improve significantly the statistics of a model, it w
etermined that the optimum subset size had been ach
he influences of the number of the descriptors on the
elation coefficient (R2) and the standard deviation (s) were
hown inFigs. 2 and 3, respectively. FromFigs. 2 and 3, it
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Table 2
Descriptors, coefficients, standard error, andt-values for the linear modela,b

Descriptor Chemical meaning Coefficient Error t-test

(Constant) Intercept 125.18 10.64 11.76
NDB Number of double bonds 8.37 0.94 8.94
WPSA-3 WPSA-3 weighted PPSA (PPSA3 TMSA/1000) [quantum-chemical PC] −1.20 0.12 −10.04
AIC2 Average information content (order 2) −11.72 1.24 −9.42
RNCG RNCG relative negative charge (QMNEG/QTMINUS) [quantum-chemical PC] −93.78 13.64 −6.88
HDCA2 HA dependent HDCA-2/TMSA [Zefirov’s PC] 1783.00 448.28 3.98
ACIC0 Average complementary information content (order 0) −9.01 1.79 −5.04
TMEER Tot molecular 1-center E–E repulsion/no. of atoms −0.17 0.04 −4.47

a R2 = 0.88;s= 3.93; RMS = 3.76; AARD = 7.89%;n = 92;F = 87.22;R2
cv = 0.83.

b Further discussion of the chemical meaning of the descriptors was given inSection 3.1of the text.

Fig. 2. Influence of the number of descriptors on the correlation coefficient
(R2) of the regression models.

can be seen that seven descriptors appear to be sufficient for a
successful regression model. The multilinear analysis of the
absolute mobilities values for the 92 compounds of the train-
ing set resulted in the seven-parameter model summarized in
Table 2, and the correlation matrix of these descriptors was

Fig. 3. Influence of the number of descriptors on the standard deviation (s)
of the regression models.

Table 3
Correlation matrix of the seven descriptors used in this worka

NDB WPSA-3 AIC2 RNCG HDCA2 ACIC0 TMEER

NDB 1.000 0.115 0.064−0.558 −0.256 0.772 0.204
WPSA-3 1.000 −0.151 −0.677 −0.685 0.397 −0.708
AIC2 1.000 −0.208 0.135−0.204 0.277
RNCG 1.000 0.588−0.570 0.182
HDCA2 1.000−0.354 0.433
ACIC0 1.000 −0.009
TMEER 1.000

a The definitions of the descriptors were given inTable 2.

shown inTable 3. The linear correlation coefficient value of
each two descriptors is <0.80 (Table 3), which means the de-
scriptors were independent in this multilinear analysis. The
values of the 7 selected parameters of each compound are
available asSupplementary Datavia Sciencedirect (the elec-
tronic publication outlet). The obtained model has a correla-
tion coefficientR2 = 0.88,F= 87.22, with a standard deviation
(s) of 3.93 (10−5 cm2 s−1 V−1), and the cross-validated co-
efficientR2

cv = 0.83. This model gave an RMS error of 3.76
electrophoretic mobility units for the training set, and the
corresponding AARD was 7.89%.

By interpreting the descriptors in the regression model, it
is possible to gain some insight into factors that are likely
to govern the absolute mobilities of the carboxylic and sul-
phonic acids in CE. Due to the diversity of the molecules
studied in this work, the electrophoretic mobility of the com-
pounds related to molecular structure in a complex way. Of
the seven descriptors, one is constitutional, two are topo-
logical, one is electrostatic and three are quantum-chemical
descriptors. These descriptors encode different aspects of the
molecular structure. As mentioned in Introduction two fun-
damental frictional factors are found to be important in the
electrophoretic mobility of a solute in CE. One is hydrody-
namic friction factor, which is related to the molecular size
and/or mass of solute, and the other is dielectric friction fac-
t so-
l t for
t r 2)
( (or-
d nd
A on of
or, which is related to the charge distribution within the
ute. The descriptors in the present model can accoun
hese friction factors. Average information content (orde
AIC2) and average complementary Information content
er 0) (ACIC0) belong to topological descriptors. AIC2 a
CIC0 describe the size, shape and branching informati
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the molecules and give some information about the hydrody-
namic friction factors. AIC2 and ACIC0 have negative coef-
ficients in the linear model, which indicates that the absolute
mobility is inversely proportional to these descriptors. The
number of double bonds (NDB), a constitutional descriptor,
describes the degree of the delocalization of electron and af-
fects the charge distribution within the molecule. Thus, NDB
has some correlation with the dielectric friction. NDB has a
positive coefficient in the linear model, which indicates that
this structural feature makes positive contribution to the abso-
lute mobility. HA dependent HDCA-2/TMSA [Zefirov’s PC]
(HDCA2) is an electrostatic descriptor. HDCA2 is hydrogen
donor charged solvent-accessible surface area, and this de-
scriptor represents the sum of solvent-accessible surface area
of the H-bonding donor atoms. HDCA2 reflects character-
istics of the charge distribution of the molecule, so it can
affect the dielectric friction term. This descriptor has a posi-
tive coefficient in the linear model, which indicates that the
absolute mobility is proportional to this descriptor. The three
quantum-chemical descriptors are WPSA-3 (weighted PPSA
(PPSA3 TMSA/1000) [Quantum-Chemical PC]), RNCG
(relative negative charge (QMNEG/QTMINUS) [quantum-
chemical PC]), and TMEER1 (tot molecular 1-center E–E
repulsion/# of atoms). WPSA-3 is equal to atomic charge
weighted partial positive surface area (PPSA3) multiplied by
t tive
n epul-
s esses
i onal
( the
m as
W ctly
o n in
t ctric
f o-
b R1,
a di-
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Fig. 4. Predicted vs. experimental electrophoretic mobilities (HM).

3.2. Result of RBFNN

From Table 1andFig. 4, it can be seen that the model
of the heuristic method was not sufficiently accurate (RMS
= 419, AARD = 8.68%) showed the factors influencing the
electrophoretic moblility of these compounds were complex
and not all of them were linear correlation with the absolute
mobility. So, we built the nonlinear prediction model by
RBFNN to further discuss the correlation between the molec-
ular structure and the absolute mobility based on the same
subset of descriptors. Such a RBFNN can be designed as
7-nk-1 net to indicate the number of the units in the input, the
hidden, and the output layer, respectively. The optimal width
was determined by experiments with a number of trials by
taking into account of the model selection criterion: a width
<1 gives poor prediction ability, varying the width indicates
width has little effect on the performance of RBFNN, if width
exceeds 5. So we choicely computed the width from 1 to
5, every 0.1. Each minimum error on LOO cross-validation
was plotted versus the width (Fig. 5) and the minimum was

.

otal molecular surface area (TMSA). RNCG is the rela
egative charge of the molecule. The electron–electron r
ion energy describes the electron repulsion driven proc
n the molecule and may be related to the conformati
rotational, inversional) changes or atomic reactivity in
olecule[34]. The quantum-chemical descriptors such
PSA-3, RNCG, and TMEER1 represent or depend dire

n the quantum-chemically calculated charge distributio
he molecules, and therefore can also explain the diele
riction contribution in determination of electrophoretic m
ility. The three descriptors, WPSA-3, RNCG, and TMEE
ll have negative coefficient in the linear model, which in
ates that the absolute mobility is inversely proportiona
hese descriptors.

From the above discussion, it can be seen that al
escriptors involved in the model have physical mean
nd these descriptors can account for the structural

ures responsible for the electrophoretic mobilities of
arboxylic and sulphonic acids. According to thet-test val-
es (Table 2), the more relevant descriptors are a quant
hemical descriptor (WPSA-3) and a topological descri
AIC2).

With the test set (Table 1) the prediction results were o
ained, confirming the predictive capability of the model.
tatistical parameters wereR2 = 0.77;F = 71.67;n = 23; s
5.44. The heuristic model produced an RMS error of
obility units for the test set, 4.19 for the whole data set,

he corresponding AARD was 11.84, 8.68%, respectiv
ig. 4 showed a plot of the calculated versus experime
lectrophoretic mobilities for all the 115 acids studied,

raining set and the test set.
 Fig. 5. The width of RBFNN vs. RMS error on LOO cross-validation
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Fig. 6. Predicted vs. experimental electrophoretic mobilities (RBFNN).

chosen as the optimal condition. In this case:r = 2.8 and
nk = 19.

From the best network, the inputs in the test set were pre-
sented with it, and the results with RBFNN were obtained.
They were shown inTable 1andFig. 6. The network gave an
RMSerror of 1.78 electrophoretic mobility units for the train-
ing set, 2.04 for the test set, and 1.83 for the whole set, the
corresponding correlation coefficients (R2) were 0.97, 0.97,
and 0.97, and the corresponding AARD were 3.54, 5.01, and
3.84%, respectively.Fig. 6 proved that the RBFNN model
was statistically stable and fitted the data well.

Analysis of the result obtained indicates that the models
we proposed can correctly represent the relationship between
the absolute mobilities of carboxylic and sulphonic acids and
molecular descriptors calculated solely from molecular struc-
tures, moreover, the seven selected descriptors can represen
the features of the compounds responsible for their elec-
trophoretic mobility behavior. By comparison of the results
from the heuristic method and RBFNN, it can be seen that
the RMS and AARD errors of RBFNN are much lower than
that of the HM. The performance of RBFNN models seems
to be better than that of the heuristic method, which indicates
that nonlinear model can simulate the relationship between
the structural descriptors and the mobility of the acids more
accurately.

4

neu-
r nlin-
e pre-
d of
1 iptors
c lin-
e lts, at
t bet-

ter results with good predictive ability than linear model, so
we can conclude that (1) the proposed linear model by the
heuristic method could identify and provide some insight into
what structural features are related to the absolute mobility
of the carboxylic and sulphonic acids. (2) Nonlinear model
can describe accurately the relationship between the struc-
tural parameter and the absolute mobilities of the 115 car-
boxylic and sulphonic acids. (3) RBFNN proved to be a very
promising tool in the prediction of electrophoretic mobility.
Nonlinear models using RBFNN based on these same sets
of descriptors produced even better models with good pre-
dictive ability. The training procedure is also simple because
there are only two parameters to be optimized: the number of
units in the hidden layer and the width of radial basis func-
tion. If we add to the increasing accuracy of RBF networks,
the lack of difficulty to find an optimum architecture and
the almost instant training, it will be easily concluded that
RBFNN can be a significant partner for the development of
different quantitative structure–mobility relationship system.
Additionally, the compounds studied in this work include car-
boxylic, sulphonic, aliphalic, aromatic, monofunctional, di-
functional, and tridunctional acid, etc., which cover almost
all types of organic acids. The models we developed are gen-
eral and applicable for the prediction of the absolute mobility
of the organic acids. Furthermore, the proposed approach can
a

A

pour
l up-
p

A

can
b ma.
2

R

, J.

01)

[ 02)
. Conclusion

The heuristic method and the radial basis function
al networks were used to construct the linear and no
ar quantitative structure–mobility relationships for the
iction of absolute mobility in capillary electrophoresis
15 carboxylic and sulphonic acids based on the descr
alculated from the molecular structure alone. Both the
ar and nonlinear models provided the satisfactory resu

he same time, the nonlinear RBFNN models produced
t

lso be extended in other QSPR investigation.
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